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REPORT SUNMARY

Research is undcr .... in several areas of collision phenomena relevant

to molecular laser operation. Due to the diverse nature of these problems, a

multi-faceted approach has been taken. This has led to the study of both

specific and model molecular systems in order to understana the physical

phenomena involved. We believe the ensuing results have important implica-

tions for the development of high-power, efficient molecular lasers. In

addition, a better overall fundamental understanding of molecular collisions

has been gained and this should have application to a number of other ralaxa-

ticn phenomena. The remainder of this report consists of three manuscripts

detailing specific aspects of this research performed in the past year. A

brief summary of these results is given below.

1. Kinetic Analysis of the CO Laser System with Updated Rate l-for4tion

In collaboration with Professor E. Fisher, 14ayne State University, we

have undertaken a thorough examination of the kinetics in the low-temperature

CO-He discharge system. This system has been suggested as an efficient

source of high-power infrared laser radiation. Our present research focuses

on an analysis of the observed CO population distribution and its implica-

Li....c fr c lisional rate behavior, This study has made important use of our

recently calculated CO rate constants which show significant scaling differ-

ences with the older semiempirical models. The attached report presents a

simple and useful correlation of the newly available rate information. This

correlation is presently being used in CO laser analysis and the preliminary

conclusion is that the new rate scalings make a substantial improvement in



explaining the observed CO population. It is our ultimata goal to turn this

information around and suggest design improvements for operating laser

systems. Further research in this area will be pursued in the coming year.

2. Model Studies to Determine the Key Molecular
Parameters Controlling Collision Behavior

A variety of model calculations have been performed to bring out key

physical effects entering into molecular collisions. A prime concern is the

determination of temperature and quantum number scaling behavior. This infor-

mation is very important in laser analysis and other general relaxation

phenomena. A new and more accurate computer code has been written to replace

our earlier version fJ. Chem. Phys. 64, 5291 (1976)]., Calculations are

presently under way and will be report d at a later date.

3. Stochastic Theory for Molecular Collisions

In the past few years the development of powerful effective Hamiltonian

methods has greatly simplified molecular collision calculations. Indeed many

previously impossible problems are now manageable With these methods and we

have applied them in the research of this contract. However, the present

available thc-ory has limLtations, particularly concerning the size of problem

that cai be handled. Th~s restriction is very important in many practical

applications such as lasers. Theiefore, we have undertaken a new approach

based on stochastic theory to handle large (many-quantum level ) collision

problet.as. The attached manuscript piesents the stochastic theory formulation

for vibration-rotation collision Crate changes. Tne paper discusses the

physical content of the new simplified theory and suggests nunwrical methods
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for its implementation. Applications are under way and will be pursued

further in the coming year.

I. Vibration-Rotation Collisions in I[-H.

The H2-H2 system provides a valuable prototype example for many

collisional effects of importance in lasing systems. Detailed three-

dimensional quantum mechanical calculations were performed on this system

with emphasis on the exchange of rotational and vibrational quanta between

the molecules. Collisional flux mans were studied to determine the referred

pathways for vibration-rotation transitions. This study has led to valuable

insight into the collision of identical molecules. The details of this qork

are included in the attached manuscript. it would be valuable to extend this

study to the collision of non-identical molecules such as D2-112, since such

situations commonly arise in many applications such as lasers. Further con-

sideration of this work will be treated in the coming year.
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ABSTRACT

A new correlation of the recent theoretical CO-He vibration-transla-

tion rates by Verter and Rabitz is presented. Using a functional form

suggested by the SSH theory, a simple analytical correlation function is

obtained for 30000K Z. T 1000K and quantum state change Ai = 1,2,3. In

addition, a semi-empirical formula for Ai = 1 rates is obtained by fine

tuning the correlating formula to agree with the available experimental

1 to 0 rates. In this fashion optimal use was made of the best available

theoretical and experimental information. The result is compared with

rates estimated by other procedures.

!I
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CORRELATION OF VIBRATION-TRANSLATION

RATES FOR CO-He

by

S. H. Lam* and H. Rabitz**

I. INTRODUCTION

In the study of vibrational kinetics of CO laser systems, quantitative

information on various vibrational rates are required. A reexamination of

the CO V-T (vibration-translation) information at this time is appropriate

because of its importance in laser studies and because rnew theoretical1 and

experimental results2 have recently become available. In the present paper,

we shall be solely concerned with V-T rates for CO-He collisions, particu-

larly at low temperatures T and high vibrational quantum numbers i. Our

objective here is to construct and present a simple semi-empirical formula

for the estimation of these rates based on the best theoretical and experi-

mental information at our disposal at this time. The proposed semi-empirical

formula, in addition to being of practical usefulness, exhibits certain

general features where are intec,,sting theoretically and are expected to be

present in other similar systems.

i*
Department of Aerospace and Mechanical Sciences, Princeton University,

Princeton, N. J.
**Alfred P. Sloan Fellow, Camille and Henry Dryfus teacher scholar,

Department of Chemistry, Princeton University, Princeton, N. J.
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We shall denote kVT(i,T;Ai) to be the de-excitation rate of a CO

c.rlecule from i to i-Ai at temperature T. The corresponding Ai to 0
4T

iates shall be denoted simply by kVi o(T).
AlO

VTExperimental data for KI o(T;expl is relatively abundant, covering

a wide range of temperature. 2'3'4  Experimental data for i/l rates is

generally scarce, and for CO-He the totality of data appears to consist

of only 5 points obtained by G. Hancock and Smith' (for i=9,10,11,12,13).

Thus, estimation of rates for i>l and Ai>' in practical applications must

rely primarily on guidance from theoretical considerations.

II. THE SSH THEORY AND THE BR ESTIMATION PROCEDURE

The vibrational levels Ei of CO may be written approximately as

fullows

Ei : ikev[l-xe(i-l)], i 0,1,2,...

where 6v = 31230K is the characteristic vibrational temperature and

Xe = 5.98 x 10-3 is the anharmonicity which, inspite of its smallness,

exerts a strong influence on the V-T rates.

The basic theory on vibrational rates was developed in a sequence of

two papers by Schwartz, et al.6,7 commonly referred to as the SSH theory.

The SSH resdlt for Ai=l V-T rates can be written in the following form:

RVT(i,T;I) = wl(T)ZI(i)AVT (y,T) (2.1)

where wl(T) carries tie dimension of kVT and contains mainly the total

collision rate. The function Zl(i) is proportional to the square of the

appropriate oscillator matrix element which, for anharmonic oscillators,



can be approximated by

91 (2.2)10 l-xe:i

and A VT (y,T) is the so-called adiabaticity factor. The parameter y is

defined by

y =y~i,) (1-2xei (2.3)

where 0 depends on molecul,-' parameters and the assumed interaction

potential. For a repulsive exponential interaction potential with

characteristic length Z, e is given by

0 6rp~.ko2/ (2.4)

wshere pi is the reduced mass of the collision. Using the analytical result

of Jackson and Mott 8 and approximately accounting for 3-dimensionality

effects7 .the SSIV theory yields the following expression for A,'T(y,T):
AE i

AVT (y ,T) = e 2Tf(y,z) (2.5)

where AEi = (1-2x ei)kev is the energy defect and f(y,z) is the thermal

averaging integral

f(y,z) = fyl e-C I(-;y,z)dE, (2.6)

with 4(sinh z V7--)(sinh z (2.7)

I(;~)=Eosh + ccshz L

VC z zj

and z =z(T) =7 T h 28
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Sn the limit as z -c, I(F,y,-) reduces to sinh 2(y/-f), and f(y,-)

,;ecomes

f~ )=~f e_(sirh(yAJf))dE (2.9)
0

The function f(y,) has been numerically Evaluated by Keck and Carrier9

who suggest the followi.ig curve-fitting formula

f(yc) ' FKC(Y), 0 .y < 20, (2.10)

FKc(Y) 1/2 (3-e-2Y/3)e'2y13 (2.11)

Eq. (2.11) is commonly preferred over the steepest-descent result,

8(w y7/3) I3e-3y2/3, (y>>l), because of its uniform validity in the

indicated range.

An estimation procedure for V-T rates, apparently first used by Bray
10

for high temperature and later more extensively developed by Rich11 and

co-workers 12, for low temperature proceeds as follows. First, the function

FKC(Y) is adopted to represent f(y,z). The value of 0 (or k) is either

estimated or taken from tabulated data (e.g., Herzfeld and Litovitl3).

The factor wl(T) is then determined empirically by fitting tne resulting

formula for iPl to the relatively abundant experimental data on kl'(T;exp).

If additional i 1 data are available, they are used as a consistency

check. We shall call this method the BR estimation procedure.

Note that the BR estimation procedure relies primarily on Fc(Y) for

the major i and T scaling, and the final formula contains a single molec-

ular parameter, 0. A large number of kinetic calculations have adopted

this procedure because of its simplicity and because of the absence of

any better estimates.
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Recently, Verter and Rabitz1 (VR) performed extensive numerical

..alcu'itions of V-T rates for CO-He collisions over the range 30000K

T > 1000K and I . i : 44, including i = 1, 2, 3. These ab initio

calculations provide for the f'rst time detailed theoretical information

hitherto unavailable. Althounh further refinements in the calculations

are possible (at considerable additional expense), these results are

believed to be the best theoretical CO-He rates presently available.

Verter and Rabitz correlated their computed results in the follow-

ing form:

4
kVT(i,T;Ai) = i exp E Bn(T,Ai)in-l (2.12)

n=O

To cover the range 30000 > T > 1000K in 1000K increments for Ai = 1, 2, 3,

c total of 4FO coefficients (Bn 's) were needed. In this form the VR

results are somewhat cumbersome to use and difficult to generalize or

interpolate. Comparison of VR and experi,,ental kVT (T) rates shows agree-
1,0

ment with a factor of about 5 at high temperatures and a factor of about

2 at low temperatures. Comparison between the VP rates and the commonly

used BR rates shows substantial differences, particularly at high values

of i and low temperatures. These differer.ces can have significant effects

on kinetic modelling in CO laser studies as shall be pointed out later.

III. NEW CORRELATION OF THE VR DATA

Motivated by Eq. '2.1), we propose the following expresion as an

alternative to Eq. (2.12):

AiAEi

kVT(i,T;Ai) = wAi(i,T)ZAi(i'e 2kT Fi(Y,T) (3.1)
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where 1(i) remains as given by Eq. (2.2) and '2' Z3 are chosen to be,6

= £l(i)&l(i-l), 3 (i) = £l(i)2l(i-l).l(i-2) (3.2)

The function Fi(y,T) is to be chosen under the guiding principle that

wmi(i,T) should have the minimum i dependence. We shall retain y as

defined by Eq. (2.3) as the primary correlation variable. The parameter

0 affects y only by a constant factor and need not be specified in the

correlation procedure. In fact, we shall presently determine an effec-

tive 0 as a by-product of our correlations.

Inspection of the VR data appropriately reduced and potted immedi-

ately indicates that the Ai = 1 high temperature data can indeed be

roughly correlated by F~c(Y) provided we choose 0 = 2.64 x 106. Fixing
0

0 at . -:alue (which corresponds tc Z = 0.3 A), the following form
for F i(y,T) is proposed.

3 e-c'y e e-ay*-abl(y-y*)
F. i(y,T) = 1+e al(Ya2 + (3.3)l+beb3[Y-Y(l , ' 3

where a, al, a2, bi, b2, b3, and y, are curve-fitting parameters. The

first term is suggested by FKC(y) and dominates in the y < y, region.

The second term dr inates in the y > y, region. The parameters are

found to be

a(Ai=l) = 2/3, c(Ai=2) = 1.03, a(Ai=3) = 1.3

a, = (2/3) , a2 = 5.5 (3.4)

y, = 21.5 bI = 0.525(1 + T

= b = 1502' T
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Note that e = 2.64 x 106 "K is obtained as a consequence of setting

c(Ai=l) = 2/3.

Using this specific choice of FAi(Y,T), the values of wAi(iT) are

then computed and typical distributions are shown in Fig. 1. It is seen

that the resulting w i(i,T)'s generally do exhibit a weak i dependence.

As shall be seen more clearly later in Fig. 3, the exceptional cases

are w1(l,l000K), w2(i<lO, T<4000 K),, and 3(i<l0, T<1000K) where the

correlation becomes locally poor. It is believed that for Ai = 3 the

form for 3(i) assumed in Eq. (3.2) is mainly responsible for these

large local aberations. For the other cases, the local aberations may

be reduced by firne tuning the parameters b2 and b3, Since the original

VR data for these cases is likely to have the largest numerical errors

(noise), such refinements were not considered meaningful or worthwhile

at this time.

Fig. 2 shows'w i(T) vs T where Wii(T) is the averaged value of w

(10i<40,T). Fig. 3 shows Fi(y,T) as given by Eq. (3.3) vs y as solid

lines. The original VR data represented by Fi(y,T)wi(i,T)/ Ai(T) may

also be displayed on this diagram. However, because of the s'ale of

the diagram, only the data with wAi(i,T)/wAi(T) substantially different

from unity will deviate from the solid lines and is shown by the dotted lines.

IV. INCORPORATION OF EXPERIMENTAL DATA FOR Ai = 1

The weak "scatter" of wl(iT) about -I (T) is comparable to the

scatter of the original VR calculations. Thus we may justifiably replace

wl(i,T) in Eq. (3.1) by 3(T) and consider the resulting formula as an

alternative to Eq. (2.12) when Ai = 1.
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Borrowing the ided from the BR estimation procedure, we propose the

followi:g semi-empirical formula for kVT(i .T,):
AEi

kVT(i.T;l;emp) = w,(T;exp)l e(i e-T F(yT) (41)

The funct'on wl(T;exp) is to be determined by fitting the available

VVT
expeimetaldata on k To(T;exp) while F,(Y,T) determined from the VR

theory is retained. Fig. 4 is a conventional plot of log k
VT vsT /3

10 vs

showing the high temperature experimental data of Millikan and Whited

and the moderate an. low temperature data of Miller and Millikan4 and

the recent data of Drozdoski, Young, Bates, and Hancock.2 Also shown

are the original VR rates.

Using the experimental data shown in Fig. 4, the values of wl(T;exp)

are computed and are shown in Fig. 5. Also shown are wj(l,T) and I(T)

for comparison purposes. The w,(T;exp) data can adequately be fitted by

r~' iT 2
wl(T,exp) = A , 1000K < T < 8000K (4.2a)

1/3
A(-) 800°K <. T <. 30000K (4.2b)

where

A = 6 x lO cm3/sec-molecule

= 1 x lO-10%m 3 /sec-mole.

In the indicated temperature range, Eqs. (4.1) and (4.2) is the proposed

semi-empirical CO-He V-T rate formula wiicn contains the most up-to-date

theoretical and experimental information available at this time.

Fig. 6 shows kVT(i,T;l;emp) and the corresponding BR rates (using

0=2.64 x 10GK) for T = 100'K, 2000K, and 3000K. Also shown are the



five data points of G. Hancock and Smith5 which are believed to have

been obtained at room temperature. Unfortunately, these data points do

not discriminate between the two rate estimates which diverge from each

other substantially only at higher vibrational levels. Thus, definitve

confirmation of the VR rates must await additional discriminating experi-

mental data to become available.

V. DISCU3SION

We have obtained a new correlation of the theoretical VR rates for

CO-He in a form suggested by the SSH theory. For the Ai = 1 case, we

have further proposed to replace wl(i,T) by w,(T;emp) given by Eq. (4.2)

so that the resulting semi-empirical formula, Eq. (4.1), reproduces the

experimental data on klTo(T;exp).

Using harmonic oscillator wave functions, the SSH theory showed

that the square of the matrix elements can be written as Zl(i) - i,

Si(i-l). Our choice of 2%i(i) here rests entirely on analogy,

accounting for the effects of anharmonicity only through the denominator

of iq. (2.2). We believe that the poor correlation of the low i data

for the Ai = 3 case is primarily a reflection of the inadequacy of our

choice of Z3 (i).

In addition to the constant 0 used in the definition of y, the

function Fi(Y,T) contains seven curve-fitting parameters: a, a,, a2,

y , bl, b2 , b3. The values of a and 0 are not independent. Ry setting

a(l) = 2/3 and requiring Fl(y,T) to agree with FKc(Y) for 10 < y 20,

we deduce 0 = 2.64 x 10' OK, yielding from Eq. (2.4) an effective inter-
0action length £ 0.3 A which is found to be in good agreement with the
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actual interaction potential (in the strongly repulsive wall region)

used in the original VR theory. The other curve-fitting parameters

are probably also related to the interaction potential used, but such

relationships have not been identified.

Using 0 = 2.64 x 0 oK fr.) CO-He collisions, the values of y for

the temperatures range considered covers the range 57 > y > 5. Since

FKC(y),as given by Keck and Carrier,9 is a valid approximation to f(y,z)

only for y < 20, we have numerically computed f(y,z) as given by Eqs.

(2.6) and (2.7) Our results show that for y < 20,f(y,z) is indeed

accurately represented by FKC(Y). For y > 20, f(y,z) exhibits a weak

T dependence similar to Fl(Y,T), but diverges rapidly from it with in-

creasing y.

An interesting feature of the VR rates is the distinctly more rapid

variation of Fi(yT) with y for the first few levels whPn y > y, = 21.5.

Ignoring the Ai = 3 case which was discussed earlier, this distinctive

"boundary layer" structure for low values of i can be clearly seen in

Fig. 3. This behavior is accounted for by the denominator of the second

cerm in Eq. (3.3), and the parameters b2(T) and b3(T) tere chosen to fit

the Ai = 1, IO0OK and 200'K data. Since no such behavior is anticipated

by the SSH theory, we have carefully examined the possibility of syste-

matic numericF.l errors in the original VR calculations and concluded

that it is unlikey. However, because of the Lomplexities of the nuner-

ical procedures used, this possibility, although remote, cannot be

entirely ruled out.

Except for this boundary layer structure (for y > y,), the VR data

is qualitatively consistent with the interpretation that the effective
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value of Z is a variable and decreasing function of the "energy defect"

of the collision.

'While the reasonable agreem-ent between the original VR rates with

kVTo(T;exp) as shown in Fig. 4 is encouraging, it must be emphasized

that no definitive verifications at high values of i are yet available.

The consistency check with the data of G. Hancock ard Smith5 is incon-

clusive. Nevertheless, it is clcar that the semi-empirical rates

(Eqs. (4.1) and (4.2) proposeo here rest on firmer grounds tnan

the BR rates. Recently, Lordi and Rich 14 measured CO popuiation

distributions in a CO-A laser system at 3000K up to i = 35 and compared

their data with Uinetic calculations. It was reported that calculations

using BR rates yielded generally poor results, but calculations using

the ad hoc assumption of replacing FKC(y) by a constant yielded much

more reasonable results. Since the VR rates exhibit a generally weaker

i dependence than .the BR rates (see Fig. 6), their observation lends

some support to the VR rates. The full implications of these new rates

on CO laser calculations will be discussed in a later publication.
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FIGURE ZAPTIONS

Fir,. 1 Typical distributiois of ',i(i,T) as a function of i.

A flat distribution indicates good correlation.

Fig. 2 -i(T) Ps a function of T where -w (T) is wi(i T)

average,! over the levels.

Fig. 3 The solid Pines are FAi(y,T). The dotted lines are

FAi(yT)wAi(i,T)/Ai(T) which represent the original

VR data. Because of the scale of the diagram, only

the data with wAi(i,T)/wAi(T) substantialiy different.

from unity is shown.

Fig. 4 Comparison of theoretical and experienrtal rates.

Fig. 5 wl(T,exp), _W(T) and wI(I,T) as a function of T. The

solid dots are the recent data of Drozdoski, Young,

Bates, and Hancock. The open circles are WI(T). The

crosses are w1(l,T). The solid curve is the data of

M1illikan and White. Straight line segments are given

by Eqs. (4.2).

Fig. 6 Comparison of present semi-empirical rates with BR

rates at low temperature. Note that the BR rates

show a much stronger i depender;ce.
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ABSTRACT

Three-dimensional quantum mechanical calculations in the effective

potential approxim tion have been made on the para-hydrogen system. At low

temperatures vib-rotationally inelastic collisions were examined while

breathing sphere calculations were used to probe the high-temperature regime.

It was found that simultaneous vibrational and rotational processes contribute

to the overall mechanism of vibrational relaxation. Both intra- and inter-

molecular energy transfer is possible in the present calculation, and the

corresponding cross sections are examined in detail. Rates are calculated

from the cross sections and compared with experiment.
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I. INTRODUCTION

Processes involving energy transfer in bimolecular colli ions are

frequently categorized as rotation-translation (R-T), vibration-translation

(V-T), vibration-vibration (V-V) and vibration-rotation-translation (V-R-T).

A study of a system of gaseous molecules must, if it is to be complete, focus

s.imultaneouoly on all tkzcse modes of energ3 transfer. It is also most

desirable to treat the problem within a quantum mecha'Lical framework.

Vibrational excitation and de-excitation in collisions is an important process
1

in gas laser systems and relaxation phenomena. R,.search on the contributing

physical factors in such energy transfer is desirable. Understanding the role

of rotational inelasticity accompanying the vibrational inelasticity is also

believed crucial in interpreting some relaxatiPn phenomena. The analysis of

the scattering properties of a system demands a reasonably accurate knowledge

of the interaction potential in order to proferly reproduce the dynamics. As

a practical matter, the computational expense must remain within a reasonable

limit if detailed analysis is to be possible.

In this context, the para-hydrogen system is an attractive one with a

view to examining the processes mentioned above. A study of hydrogen is

useful in itself and may provide a model for more complex systems. The purely

vibrational problem has been approached in the distorted wave formalism by

Calvert,2a who calculated the ratio of de-excitation rates for H2-H2 and 112-D2 .

A collinear study of near resonant V-V processes I2-D2 collisions was made

by Alexander2b using a variety of intermolecular potentials, includirg the

one used in this study. More recently rotations and vibrations have been

included in a three-dimensional semiclassical study by Fisher and Billing.2c

We hava chosen to solve the quantum scattering equations for this system in
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the effective potential (EP) approximation.3 a With this approach the

dimensionality of the coupled equations that must be solved is greatly reduced

in comparison to the exact-close-coupled equations.3b In this fashion the

large numbers of channels involved in a vibrotational calculation can be

manageably handled. The shock tube experiments ot ;:-efer and Lutz4 and Dove

and Teitelbaum as well as the low-temperature stimulated Raman scattering

experiments of Ducuing et al. 6 for H2 allow a comparison with some of the

calculations.

We have examined the para-H 2 - para-H2 collision from two points of view.

Firstly, the molecules are trc.ted as two breathing spheres (i. . they are

restrictea to the rotational state J= 0). In the second case tne coupled

vibration-rotation equations are solved in the EP approximation; thii effect

of, including rotational sub-levels on the ground and first excited vibrational

levels was then studied. rhis latter work serves to complement the partial

pictures of purely rotational and breathing sphere calculations.

Section II reviews the theoretical framewdork pertinent to this work.

In Section III the intermolecular potential is discussed. Sections IV and V

examine the cross section and rate behvior of the V-T and V-V and V-R-T

processes as well as the associated relaxation phenomena. The final Section

VI draws conclusions from the study.
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II. THEORETICAL FRAMEWORK

The EP approximation has been extensively discussed earlier, both with

7regard to theoretical development and practical validity.8  The formulation7'9

is extended to the case of two identical vib-rotors in the present treatment.

The Hamiltonian of this system is

R T + H0 (int)+v ()

where T is the kinetic energy operator, V the interaction potential, and

Ho(int) the unperturbed vib-rotational Hamiltonian operator of the colliding

molecules. Effective eigenstates of HO(int) are written as lnlJn 2J2),

with n ji describing the vibrational and rotational quantum states of

iolecule i= 1,2. The interaction potential V is usually expanded in a sum

of spherical harmonics over the orientation of angles of the two molecules

V(r',r2,R) A I)' 2Z (r r2R)(tLmj1 2m 2!Lf1t2 .tm)

where A 442 are 1.he er:pansion coefficients, r1 and 12 define the

vibrational coordinates of the two molecules in the space-fl :ed coordinate

system, .nd R is the v ctor joining the centers of mass of the two molecules.

This expression is considerably simplified in the body-'ixed axes 8b shown in

Fig. 1. Further discuasin of the potential is contained in Section III below.
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The effective poteizial10 matrix elements are given by

(nJjn 2 j 2 1veff(R)jn 1'j 1'n 2 'j 2 ') - No exp(i)

where

NOIJ I [,. J 2 [.1 ] J [I ' I I[J 2' 1)-/

J I+2 -JI'-J 2'1 + J I'+ J' + JI 21 I

[k] - 2k+l, and (:2) is a 3-J symbol.I 1

The expansion coefficients have been integrated over the vibrational coordinates

with respect to the vibrational states, (rini) = 0n(r)

tn2lA £(R)jnjfn2) drdr2 COn (r, n (r 2 ) A' 14 V(rjr 2 R) %n(rt) pn ,(r ) (4)

112 i n2 n2

Equation (4) assumes separability of the molecular vibration-rotation

wavefunctions; this approximation can easily be relaxed if necessary.

In the case of homonuclear diatomics the additional symmetry under

nuclear interchange requires that the total wavefunction be synmwtric. The
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observed cross section, a , is a statistically weighted sum of symetrized

cross sections

0cbs -+W s + o'Wa  (5)

where the + and - signs refer to the total symmetry of the spatial part

of the wavefunction. For hydrogen, which is a boson, these weights are given

by

1+1 Wa W a
21+1' 21+ '

where I is the total nuclear spin (O for para-H2 ).

The wavefunction is then expanded in a symmetrized basis set,

I n (1,210) =

[2(1+8~~6 1 2 )1/2 {Cp j(1) Yn 2 J2 (2) t (-I A(Pd 1 (2) cp 2 J2 (I )}, p(cos e) (6)

where 0 is the polar angle of R. This results in the following form for

the symmetrized wavefunction

(R,1,2) = L (R) Inj j (1,216) (7)
' ::(RI'2 X U~nljjn2J2 Anjn 2

where the sum is over all the indices. In this basis set the aymmetrized

EP matrix elements become
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(nljln jIV + (eff)(R) jIn 1'j 1'n 2 'j 2') =

8~ (1+81 68 ) 1-/2

AV -+8j28,, ( Sn2J1 J2

x {(fl~jil 2J2lVeff(R)IljIfl21J2I) ± (-l)I(fl~jin 2J2IVeffln 2 J2 nlwjlI)}j (8)

The coupled differential equations for the system are then

L d-R R2 + Enlj, + E nj U- nJ:-,2j (R)

" (LntjtnlIJ2Vf f nljnl 2 'Jt U2tn' J'n j (R) (9)
n1 

UinAi n'

where ji is the reduced mass of the colliding pair, E are the internal
nj

energies of the molecules i= 1,2, and E is the total energy at which the

molecules collide. The ground state of each molecule E0 O is the zero point

energy, 0.268 eV, and the total energy satisfies the relation E > 2E0O. The

asymptotic solution to the Eqs. (8) yields the scattering amplitude from which

the symmetrized S matrix may be obtained

Un n (R) (/2 [6 6n 8n6 ~ 6 expik 1 Rcose).~n j ?J T 6ll6 2 ~, J22llnJ

± njn' 6 nnj j 6j2 J , exp( ik njn2j2 Rcos (TT -))]

+ exp ik R)-f(n jn 2 J 2 -'rJl'n2'J 2 '10) ± f(nujln2J2"n'J 2 'ni'j,'IrrO-)j
- en j ,'n2(j 10)

+10
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where knj is a wave vector. The symmetrized scattering amplitude,

may be defined as

+
f(nlj~n2J2I ni'jl'n2'J2'Ie) = f(ljn2J2* nlj'n2'J2'le)

±f(nljln2 J2 -*n 2hJ2 'nl'jl'j iT -e) -

X (A~)[l±lY njn 2 6 J2)(i± ( n2L 6 n1 'n2'

X, L6nini6n~ 16 - S., (nljlnz2 ; nu'ii'n2'i')j P't(Cos) (11

The total cross section is then given by

1/2

- a(nlnin -nIiitn~lJ$) k
njjn 2J2  -L 1 IIJ

(2~~ ~ n2 + ) 1i6

2

x 16njj 6 8 -,1 ~216JJ' S (n jn J ;jjq2J'j(2



- 39-

The above results can readily be applied to the case of two breathing spheres

by setting JI=J2 -J 1 1=J2'=n and retaining only the term £1 =- 2 =L=O

in the potential in Eq. (3).

obs
After generating total cross sections a as a function of kinetic

energy, rates of excitation and de-excitation can be obtained as a function

of temperature by averaging over the kinetic energy.12 The appropriate

excitation rate constant is given by the expression

<i ( T )  3 /2 1/2 exp ((Ei'E )/K Go ",a, e+j ep K~

(13)

where E > Ei and e - E-E is the final kinetic energy. The abbreviated

indices i,j label the molecular levels and K is Boltzmann's constant. In

a similar fashion, for de-excitation (E > Ei), the expression becomes

kji(T) = (Ar-)f (9j) e~a 1(+E )exp (- e/ KT) dc (14)
0

Equations (13) and (14) are related by detailed balance and in this paper the
units of k(T) are cm3 sec " molecule'.The various equations developed in

this section will be applied in Sections IV, V and VI.

[I



III. HE IN'ERMOICULAR POTENTIAL

The interaction potential between two hydrogen molecules has been

13discussed in some detail in the literature, and much work is still

14
proceeding. Unfortunately for our purposes most potentials

developed thus far are unsuitable for application in a study of vibrations

since they examine the H2 -H2 surface keeping the intramolecular H-H bond

distance at the equilibrium value of - 1.4 Bohr. Since the effective potential

matrix elements in Eq. (3) must be obtained by integrating over the vibra-

tional coordinates in Eq. (4), the potential surface must be known as a

function of these coordinates. Currently the only available potentials that

incorporate this feature are the Silver-Karplus London13 f and Valence-Bond

(VB) surfaces.13g As was demonstrated elsewhere,15 the inherent simplicity of the

latter surfaces precludes a high degree of accuracy. However, these surfaces
13 f

are believed to be qualitatively correct, and they should allow for a

determination of the basic physical effects dominating the collision. This

goal ie in accord with the purpose of this research, which is the determination

of the collisional mechanism that is operative in hydrogen relaxation.

The potentials were generated as a function of the angles el, 82, and

(9 -CP2), and the distances r1 , r2 and R. They were then fit by a least
squares procedure16 to the expansion in spherical harmonics in Eq. (2),

including all terms up to A22 4. This expansion incorporates the pritcipal

components of the potential: the spherical term A00 0 and the various short-

and long-range anisotropies A202 , A0 2  and A2 2 4. In computing the coupling

matrix elements, the H2 molecule was treated as a Morse oscillator,
17 and the

integration in Eq. (4) performed numerically.
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A few additional comments are nece.;sary concerning the potential. AP

the H2 molecule ib stretched to a bond distance greater than 3 Bohr, the

potential becomes decidedly more anisotropic than can be adequately expressed

by a least squares fit to the six-term expansion employed above. The number

of vibrational states n that can be included is therefore limited to those

whose wavefunctions (p n(r) die out sufficiently by r= 3 Bohrs. This is

not a severe res-Iriction since the bas-,c trends are discernible within this

framework.

IJ
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IV. COMPUTATION OF CROSS SECTIONS

A. General Comments

The Gordon algorithm 18 was used in solving the coupled scattering

equa.ions, Eq. (10). The utilization of symmetrized basis states in Eq. (7)

requires soiving fewer coupled equations. This procedure also results in

the calculation of a-

9±(nljln2J2 I-,n1 j 1'n 2'j 2') = a(nljn 2 J2 - n 1'j 1'n 2'J 2 ') ± o(nj n2 j 2  ,n2 'j 2'n1 'j 1 ') (15)

which is an inseparable sum/difference of direct and exchange cross sections

respectively (neglecting the generally weak interference terms). Note that

for para-H 2 the statistical weight, Wa = , and only + matrices need be

ob s
c~lculated to obtain a on Eq. (5). In actual conputations the basis set

+
used in calculating even or odd I valued S + matrices is different because

of the nature of the symmetrized potential matrix in Eq. (8). The S+

matrices corresponding to even or odd t values behave similarly as a function

of A, but they can have differing contributions to the total cross section.

Within r. iher set, however, it is often sufficient to compute the matri-es at

a uniformly spaced grid (rather than each I value) since the behavior is

smooth as a function of A.

The total energies of the calculation were on the range 1.05 eV < E S 3.12

for the case of two breathing spheres and 0.5 eV < E < 1.35 eV for two vibrotors

Since vibrationally excited states are closed below 1.05 eV, only pure y

rotational information is obtained in the lower regime. A more thorough
15

treatment of this aspect is to be presented elsewhere, and only brief

comments concerning pure rotations will be made below. Vibrational trauiti)ns
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inherently lead to extremely small cross sections (save the near-resona-'t

V-V cases) particularly near thresholds. The difficulties of calculation in

these cases have been discussed elsewhere,1 9 ind one must use tight tolerances.

Nevertheless, a certain degree of "noise" still enters, and we have found it

expedient, with the rrte calculations of the following section in mind, to

smooth them using spline fit.
20

I B. Breathinz Sphere Transitions

The iraximum basis set employed in these calculations, in the notation

n1n2, is showr in Fig.2(a) Tb1 actual basis set in any particular calculaLion

depended on the number of states open at that energy. The S matrices were

tested for basis set ronvergence and at varying tolerances to ensure numerical

stability. It was generally necessary to include two closed channels for

convergence.

Due to differences in tie two potentials used, especially in their

slopes at small intermolecular separations, cross sections for the various

Inelastic transitions can sometimes differ by an order of magnitude.2b The

steeper slope of the VB potential gives rise to larger cross sections.

However, the behavioral aspects of the cross sections from the two potentials

are quite similar. In particular, transitions involving the change of the

same number of quanta are grouped together and are generally separated from

other groups by approximately an order of magnitude. This is illustrated in

Fig.3(a)which shows tLd resultG of calculations using the VB potential. Each

%and encompasses the de-excitation cross sections involving the same number

of quanta, An, exchanged with translation
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H2(n,,O) + H2(n,,O) -" H2(n 1 ,O ) + H2(n2',O )

An =(n 1 +n 2 ) -(n'+n)

The energy deficit, &E E nj0 + En20  En t0 -E n2,O , is different for the

various transitions within each band, and this together with the different

coupling effects accounts for the spread of the bandq. Figure3 )and all

follcning figures depict the results of calculations using the Vb potential

since we feel that this potential is more in agreement qualitatively and

quantitatively with the true physical potential (cf. Section VI below).

It is quite evident in Fig.3(a)that the near resonant V-V transitions,

for which An= 0, have greatly enhanced cross sections and are well separated

from those for which An > 0. The cross sections for An > 0 tend to overlap

considerably in the threshold region. The individual cross sections generally

rise with energy at different rates as shown in Fig.3(b for a fe,, typical

cases. This behavior can give rise to different temperature scaling which

will be discussed later.

The detailed behavior of the cross section .n Fig.3(b)is rather complex,

but some comments can be made. For instance, it is apparent that

a 03 411 < a03*O2 even though the energy transferred AEO3 II is slightly

smaller than AE03 4 0 2 . Both these transitions result in a net change of

An=1I. However, physically these constitute different processes. Neglecting

the weak exchange term, the case 034 02 corresponds to a change of one

quantum on the second molecule, while 03-> I requires one molecule to gain

a quantum and the other to lose two quanta. This latter case is clearly less
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favorable due to diminished coupling effects. A similar situation occurs in

the case of a0 2  00 > a1i 0 0  Caution is called for in any generalization

of these results since it is apparent that c2 2 4 1 1 >022402 at least at

lower energies.

C. Vibration-Rotation Transitions

In the calculation of vibration-rotation S matrices by close coupling

or even effective potential methods, the principal deterrent is the number of

channels that must be included. While in the case of hydrogen this problem is

reduced due to the large rotatioial spacing and weak coupling, even in this

.1 case the problem rapidly becomes serious. This is obvious in Fig.2(b)which

shows the high density of the rotational states involved. In tackling a

probleu of this size, a certain judicious choice must be made concerning which
+

states to include in order to achieve convergence of the desired S matrix

elements. Another practical restriction is imposed through the time required
18 21

per calculational step, which is a function of the number of states. In

practice any basis larger than 20-25 states imposes excessive demands in terms

of computer time. Calculation of each S matrix in the basis of Fig.2(b)

took 8-10 minutes in double precision on an IBM 360/95 computer since the

tolerances 18 had to be consistently maintained at 5 X 10-6.

Tests of convergence were performed by varying the states in the basis.

+
Purely rotational transition S matrix elements generally converged on

inclusion ol all states up to the energetically highest open level. Coupling

decreases rapidly for large multi-quanta transitions, giving rise to extremely

small cross sections for transitions like 06O6 0000. Inclusion of such very

high O310J2 states did not affect the principal rotational and vibrational

transitions.
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The actual basis set, therefore, consisted of the twenty states shown in

Fig.2(b)

Figure4(a)shows several purely rotational cross sections as a functicn

of energy. The principal ones, for which Aj =2, lie mainly in the region

10-2 A2 < a 10 2, and AJ > 2 cross sections decrease with increasing Aj.

Figure4 b)is a profile of de-excitation rotor transitions at a total energy

of 1.06 eV. It is apparent that for inelastic rotational cross sections

(ajjn2J2 - nj j 1 ,n 2 V) the largest member corresponds to (J1 + j2) - (J 1 '+ j 2 ) 2.

In addition, since the lower quantum states are energetically closer together,

one readily sees for J1 < J2 that

a >  Cr
JIJ2  J - 2,J2  JJ2 -1J2 -2

Rknay of th-se trends were previously observed in atom-molecule collisions

Sa 9a
such as He-F 2  and in rigid-rotor studies on {2-H2z Although the trends

are the same, the magnitudes of the previous U2-H2 cross sections9 a based on

6 different potential are somewhat smaller. The same general behavior is

neen for tose transitions that involve one vibrationally excited molecule,

with an additional interesting aspect that can be seen in the compartson of

the two collisions

112(02) + 12(00) H 12(00) + H2(02) (a)

H2(12) + R2(00) -> 1(10) + H2(02) (b)
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Case (a) is really an elastic collision due to the enormous contribution of

the exchange term o(O200-*0200) in Eq. (15). In case (b) the exchange term

is extremely small since the process would be a vibrational exchange.

ft Therefore, case (b) must rely on the direct term a(12OO-*1002) which itself

describes an exchange of rotational quanta between the two molecules. The

net result is that case (a) has a much larger cross section than case (b).

Figure 5 represents a typical profilk of vibrotor de-excitation cross

sections at a total energy of 1.2 eV. The transitions to the left of state

0100 on the abscissa are vibrotor cross sections, while pure rotor cross

sections (neglecting the very weak exchange process) are to the right. It is

directly visible that as the rotational quantum change Aj increases beyond 2,

the cross sections decrease rapidly. This emphasizes the importance of

coupling effects and shows the small magnitude of near resonant vibrotational

sections which are necessarily accompanied by large changes of rotational

quanta.

As can be expected, the largest crass sections are those for which

*AJ is 0 or 2. The largest vibration-'rcLation (although not substantially)

cross sections from 0010 and 0212 are to 0000 and 0202 respectively. Similarly

the. largest cross sections from 0210 and 0012 are to 0202 and 0000, respectively.

These latter cases involve simultaneous vibrational and rotational transitions,

while the former, purely vibrational. Some parallel observations on the He-H2
21

system have been made recently.

It must, however, be noted that the total energy of 1.2 eV in Fig. 5

is the same for all the cross sections. Hence the various cross sections are at

different kinetic energies and this accounts for the generally low magnitude

of transitions from level 0414 which is barely open at 1.2 eV.
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For the comparable breathing sphere transition 0 0 is slightly

VR
smaller than a0 O-40000 as has been observed in the He-H, system by Zarur'I I 8a
and Rabitz. Recent work using the atom-breath'ng sphere model for th:

He-CO 2 2 and other model systems2 3 has shown the approximation to give

reasonable results under certain circumstances. Additional comaents on this

matter will be made in Section VI.
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, 1V. RATE AND RELAXATION BEHAVIOR

A. Breathing Sphere Rates

The rates were calculated from the cross sections by Eqs. (12) and (13)

over a large range of temperatures. The rates are presented in Fig. 6

analogous to the cxoss sections in Fig.3(a). The behavior qualitatively

follcws that which can be deduced from the cross sections. However, it must

be noted that differing threshold behavior gives rise to slightly different

temperature dependence. At high temperatures the dependence is Landau-Teller

while non-linear behavior on a log k(T) vs. T"1/3 plot shows up below

- 6000 K.

The greatly enhanced rates for the near resonant V-V processes are a

consequence of their extremely large cross sections in comparison to the

A > 0 transitions. The VB potential indicates a difference be 4een the

rates for V-V and V-T processes of approximately a factor of 103-104. This

is a very significant difference and it is not clear if the inclusion of

rotational states would tend to diminish it.2c,6b Nevertheless, it is evident

that ladder climbing mechanisms (I.e., transitions of the type

njn 2 4 nj -l,n2 + l) are extremely important in the rapid and efficient

transfer of population to higher vibrational levels.

Experimental measurements of the rate of self relaxation of vibrationally

excited H2 molecules by the simulated Raman scattering (SRS) method find no

difference in the rates for ortho-or para-112 above 3000K .6b Below room

temperature the para-H2 -para-H 2 rate is slightly smaller than the ortho case.

FyiLre 7 presents a comparison of the results of this calculation with both the

SRS experiment (para-H2 ) on the range 50
0-5000 K and the shock tube data

4 ,5
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from lOO0°-3OO0K (normal H2). Of the two potentials used the results of

the VB potential are closer to the experimental oneswhich suggests

that this is the more accurate one. The 'Vi potential has been used in a:1 2b
collinear study of D2-D2 near resonant V-V processes by Alexander. In

comparison wich several ab initio potentials, it was observed that the VB

potential gave smaller cross sections and this was attributed to the slow

decrease of the potential at long range. While the agreement with experiment at

high temperatures is substantially better than at low temperature, some

discrepancy still exists. However, the breathing sphere rate behavior is at

least qualitatively accurate.

B. Vibration-Rotation Relaxation

Rates were generated in a similar fashion for V-R-T transitions below

3000 K. The restriction to this range was necessitated by the availability

of only low energy cross sections. The results of these calculations are

plotted in Fig. 7 in the following manner. First a rotationally summed

de-excitation rate is defined by th. relation

tot
kto (T) = ) ,(T) (16)klj1OJ2 U I OJ' 2OJ 1'OJ2'

J I'J 2'

These rates are shown in the inset of Fig. 7. The fact that rates from the

states 0212, 0012 and 0210 are larger than that from 0010 is indicative of

the importance of rotational transitions in vibrational excitation. Molecules

in the states where J, and/or J2 #0 can apparently utilize different and

stronger portions of the interaction potential.
9b



I.I

- B-21-

Now consider the general V-R-T relaxation process between the groud

and first excited vibrational staites

H2 (1JI) + H2 (J 2 ) ;Z 2(OjI') + H2 (Oj 2')

The rate of change in the number density, plJof molecular species H2 (Iij)

can be written as

J.J
k P P0i + k POJ i Pj (17)dt 1J Nl 2 OJ O1'Oj 2' Plj, P2 + i ko'OJ 2'1J IOJ 2 P~1 OJ2'

J 2 J 'J I'

Since rotational relaxation is generally much faster than vibrational

relaxation, it is reasonable to assume that the rotational states firm a

Boltziuvan distribution.2 4 We may therefore write the number density as

Pnj = n Pnj

where/

P nj (2j+ 1) exp (- (En -E n)/ KT) (8

Z (2j'+ ) exp(- ( En " o)/KT)

is the rotational poptlation in vibrational level n. Substituting Eq. (18)

in Eq. (17) and summing over J, leads to
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Ld dt klJlOJ2- OJ 1'OJ2' Plj1  0 POJ2
J 1 all indices

2

oji'OJ2' 4 ljiOJ2 Po POji'POJ 2 ' (19)

Equation (19) naturally leads to a definition of the effective rate constant as

0100 L PlJiL OJ2 1lJIOJ240J#OJ2' (20)

jlj.jlj 2'

The effective vibrational equations governing the process are then

dp 0  - 2

dt - kol)O 0 P0 1  ko0Ol PO

dp 1  dp 0

dt dt

where the second equation is readily established.

This set of equations can be easily solved to yield

PO (t) kl 01-00 PO 
( 0 )

"{L0o(O) { oi.Q+ lo00)oo lo + 1o.oo Q p- pO(O) o-01  o00 + oo-o }

X exp (- i 0 4 0 0 Pt)}
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where p pO+p l  is the total density.

It can readily be shown that as the system nears equilibrium
; (PoOM'" pO(co) and Pl(O) -- P1(-)), the above equations can be linearizedJ

to produce the following simple behavior

Pn(t) - d = [Pn(-) - (O~ exp (-P~ Xt)

for n = 0,1. The relaxation rate in the exponent under these conditions is

the usual sum of up and down rates in a two-level system

X k k0100 + k00o1

This relaxation rate is shomn in Fig. 7 labeled vibrotor (with the VB

potential). It is interesting to note that while the temperature dependences

tot
of k In the inset of Fig. 7 have mostly negative curvatures, the

njjn 2J2

averaging procedure in Eq. (19) yields an overall rate with the normal

positive curvature. The vibrotor calculation clearly lies closer to the

experiment than the breathin' sphere curves, but it still Nlls short of

precise agreement.
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VI. CONCLUSION

There seems to oe little doubt that the essence of the relaxation

mechanism is contained in the full vibr~tor-vibrotor treatment with the VB

potential. Further refinements are possible with more sophisticated

potentials and perhaps improved dynamical methods. An important conclusion

from the above analysis is that rotations do play a role in relaxation (at

least in the low-temperature region examined in detail) and the artificial

exclusion of J 0 states in the breathing sphere approximation under-

entimates the efficacy of vibrationally active collisions. This is in accord
8a

with previous work on He-H 2  and the recent parallel semiclassical treatment

of H2-1{2. 2c Clearly,rotational transitions would be expected to continue to

enter into vibrational inelasticity at higher temperatures. However, this

does not imply that the breathing sphere rates will have no region of

applic&.-ility. In .xperiments such as those above4 '5 ,6b 'c the rotationally

summed and averaged rates of Eq.(19)are the ones of relevance. The proper

comparison is therefore between the breathing sphere rates and those of

23Eq.(19). Model calculations have shown that a region of applicability exists

for this approximation, depending on the nature of the interactions. Indeed

in the case of He-CO 22,25 breathing sphere calculations were shown to be

adequate. Further work is still needed on this important problem.

A few final comments are in order. These calculations are moderately

expensive in terms of computer time required. It should be recalled that

3bthese were minimum size effective Hamiltonian calculations. It i. therefore

easy to grasp the magnitude of difficulty involved in studies of more complax

(massive) molecules. Several ways of circumventing this problem can be

suggested,26 bu; it is beyond the scope of this paper to delve into this

problem.
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FIGURE CAPTIONS

1. Body-fixed axes for the system of two molecules. R connects the centers

of mass of the molecules and the six coordinates are R, rl, r2, 01, e2

and the dihedral angle ( "Z2.

2. (a) Energy spacing for the breathing sphere levels studied.

(b) Energy spacing for the vibrotor levels considered.

3. (a) Breathing sphere deexcitation cross sections a(nn 2 -4n1n 2
1 ). Inset

numbers denote the quanta lost to translation, -n = (n,+ n2) - ki'+n2').

(b) Selected cross sections between breathing sphere levels, a(nln 2-*nl'n2').

4. (a) Selected rotor cross sections in both ground and excited vibrational

levels.

(b) Profile of rotor cross sections in the ground vibrational state at the

total energy 1.06 eV. Lines connect the same initial state, OJlOj2.

5. Profile of various vibrotor cross sections at the same total energy 1.2 eV.

Lines connect the same initial state OJ lj2 .

6. Deexcitation rates for H2 breathing spheres. Bands encompass rates for

transitions involving the same number of quanta lost to translation,

an- (n, + n2 ) - (n'+ n 2' ).

7. Rates of deexcitation in para-H 2 . Results of calculation with the London

and VB potentials are compared with experiments. Vibrotor results are only

presented for the VB potential. The inset shows low temperature

sumied rates defined in Eq. (16).
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ABSTRACT

Ih this work stochastic theory is applied to the treatment of atom-

vibrotor collisions. This is an extension of a previous paper which described

molecular collisions by a Pauli master equation or a Fokker-Planck equation.

In this framework an energy conserving classical path model is explored, and

methods for solving the equations rimerically are discussed. The coefficients

of the Fokker-Planck equation are shown to be expressible as simple functions

of the interaction potential. Estimates of the computational labor are also

discussed. Finally as a follow-up on the initi4l work, numerical solutions

of the master equation for the collinear vibrational excitation problem of

Secrest and Johnson are presented in an Appendix.
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I. INTRODUCTION

Many important and interesting gas phase phenomena involve collisions

of relatively large and complex particles. A previous paper (hereafter

referred to as I) investigated treating molecular collisions as a process of

probEbli*lity diffusion between quantum states. This avenue of approach seems

attractive for handling complex collision systems that are too difficult to

treat by standard methods. These ideas are more fully developed in the

present paper.

The treatment in I presented equations that are applicable, in principle,

to arbitrary systems. However, the theory was only developed in detail for

one-dimensional problems (i.e., one internal degree of freedom). The present

paper concentrates on an atom-vibrotor collision system as the simplest

neaningful case with more than or degree of freedom. The resulting stochastic

equaticis then have two spatial variables, one for vibration and one for rota-

tion. All the relevant concepts can then be generalized in a straightforward

fashion to arbitrary inelastic scattering problems.

The stochastic theory requires the solution of either a master equation

(ME) or a simpler Fokker-Planck equation (FPE). One of the most desirable

aspects of this theory is that all the physics of the collision system can be

condensed into a small number of coefficient functions in a FPE. Qualitative

predictions about the behavior of the inelastic processes can then be imme-

diately made by considering the magnitude and form of these functions. It

will be shown in this work how the FPE coefficients can be generated in a

straightforward fashion from a given intermolecular potential. This approach

may ultimately prove to be useful for relating observed cross sections to the

properties of an individual collision system (i.t., the Hamiltonian).
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In most cases of practical interest, the ME or FPE will not be analyti-

cally solvable. This paper therefore explores methods of solving these

equations numerically. The translational degree of freedom (represented by

the vector R is treated in this context as following an energy conserving

classical trajectory. For most problems of chemical interest the particles

are maasive eziough so that the classical path approximation is expected to be

very good. The combination of a clacsical translational path with internal

degrees of freedom obeying quantum stochastic equations of motion provides an

attractive conceptual model for molecular collisions.

Section II deals with the detailed consideration of the stochastic

theory as applied to atom-vibrotor scattering. It is shown that the NE can

be approximated by a FPE which describes the flow of probability between

energy levels rather than quantum numbers. This has impo-tant advantages,

especially for caset such as asymmetric rotors where the quantum nuxbers are

poorly defined. Expressions for the FPE coefficients are developed in terms

of matrix elements of simple functions of the interaction potential. Applica-

tions of various approximate methods to the stochastic equations are considered

in Section III.

- Numerical methods of solution are treated in S3ection IV. Given an

interaction potential, an energy conserving classical path model for the ME

requires that an exponential matrix be calculated at each step of the R

integration. If n is the total number of quantum states, this procedure

will typically require matrix multiplications whose computational diffl.culty

varies as n3. The FPE, on the other hand, can be solved in principle by

methods whose difficulty is more dependent on the number of degrees of freedom,

N, than the number of states. The relative computational efforts can be of

considerable practical importance.
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Finally, calculations were presented in I for a collinear vibrational

e2.¢itation problem. It is shown in this paper that some of the approximations

involved in those calculations can be eliminated or improved. In particulartI
the classical path formulation of Section II is illustrated. Results for the

model He-H collinear system of Secrest and Johnson are presented in an

Appendix. In addition it is shown in Section II that the stochastic equations

remain very easy to solve, even for noncollinear collisions, whenev-r the

intermolecular potential has the form

V -A() + B(R)C(r)

where r is shorthand for all the internal degrees of freedom. The present

paper further develops the ideas presented in I, but much additional work is

still to be performed.
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I. STOCHASTIC THEORY OF ATOM-VIBROTOR COLLISIONS

It was shown in I that the ME for a collision system with K internal

degrees of freedom is given by

P (, X2,...xN" A(x1 ...,.;x 1,...,xN;t) P(x1 ,x , ... ,x,t) (2.1

where x1  is a (discrete) index for the i-th degree of freedom. If the

microscopic transition rates A are strongly peaked about xi - x,1 , then

P (X'" X" t) can be expanded in an N dimensional Taylor series about

the diagonal values. The FPE is obtained by retaining in this expansion only

terms through second order. It will therefore contain N terms of the form

__.._ pa 2p
, N terms of the form a2p and (N-1) terms of the form x.x

Since the mixed partial derivative cross terms only occur pairwise, all the

essential features are contained in a two-dimensional example. In the

remainder of this paper we shall use an atom-vibrotor as a prototype two-

dimensional problem.

A. The ME for an Atom-Vibrotor System

The relevant ME is

PA(n,j;n',j';t) eJ(njet) (2.2)
d, J'
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where n is the vibrational quantum number, j is the rotational quantum

number, and J to the total angular momentum. The microscopic transition

rates in Eq.(2.2) are given by (see I)

i2

T A (n,J;n'j';t) f(n,jlexp(-iVr/h)n',J'>12 -1 nn' 6  (2.3)

where V is the :Lnteruolecular potential and T is the (generally time-

dependent) increment betdeen time steps. Normally the orbital angular momentum

A should be included in Eq.(2.3), but it is assumed to be eliminated by using

2an effective Hamiltonian. Note that V is a function of the translational

coordinate R so that Eqs.(2.2) and (2.3) assume that R is a known function

of time.

It was shown in I that the above HE involves approximations whose

validity depends on the size of T. Most important of these is the use of

the repeated randomness assumption in the strong interaction region of the

collision. This requires that the probability amplitudes accumulate enough

phase in the time interval t to t+ T for the random phase approximation

to be made at each step. If T is too small, the phase accumulation will

not, be large enough and the ME will not be a good approximation. Thic

restriction does not apply to the weak interaction region where only a small

fraction of the inelasticity is presumed to occur.

There are also constraints on the largest permissible value of T. The

time interval T should, clearly, be short compared to the duration of the

collision. It may also be noted that the time derivative in Eq.(2.2) was

obtained as a small T approximation to the finite difference expression

a pa(n,j,t) AP (n,J,t+ 1) - pa(nj,t) (2.4)TtT
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The above arguments indicate that T ,las an optimum value determined

by the characteristics of the system at each point in time. It was suggested

in I that the average value of the time required for a jump between adjacent

quantum states was a good estimate for T. This should also be reasonably close

to the shortest time interval for which the difference equations are numeri-

cally stable. If Ho is the Hamiltonian for the internal modes (n and J)

and C are its eigenvalues, the prescription for T(t) becomes

T(t) - P(n,j,t)

njdt I nJ

. P(nj,t) • (2.5)

n, j ~ nj 9 )2j IVnj,nijtlj{n ,

In Eq.(2.5), A nj should be interpreted as the mean of the energy gaps

between nJ and the adjacent quantum states. The best form for this is not

entirely clear at present although there is no difficulty for a pure vibra-

tional problem or a pure rotational problem. In these cases the geometric

mean of the two nearest energy differences is indicated. For a harmonic

oscillator Ac just reduces to the constant energy spacing hw. The

stability criterion of Eq.(4.11) may provide a suitable alternative prescrip-

tion for T in the atom-vibrotor case. Practical calculations would also be

very helpful in this regard.

The ME is still not complete until R(t) is known. One way of

specifying this is to assume that the translational degree of freedom follows

a classical trajectory. If the coupling between translation and internal

-- • ! _ . - ll I
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modes is then ignored, simple models can be developed for the inelastic

scattering. A sinplified form of Eq.(2.5) such as

-r(t) - hcno i[ Y (C njo d j) noj0 nj I (2.6)

(no,Jo is the initial state) would be appropriate in this case. It should be

noted that when T is an appreciable fraction of the collision time, the

tive derivative in Eq.(2.2) should properly be written as a finite difference

(set sq.(2.4)). In this case calculations which treat (2.2) as a differential

equation in time may significantly overestimate the interaction as a result.

However, both the translational decoupling and small T approximations are

quite good in the limit of a large number of strongly coupled internal

states.

Given the prescription in Eq.(2.6), the ME is very easy to solve if V r

is time independent. It is easy to see that this will be truc whenever the

potential has the general form

V - A(') + B )C(7) (2.7)

where r indicates the relative separation vector of the diatom. Inserting

Eq.(2.7) into Eq.(2.6) gives

[ ~~1 (%j1~~/2
T(t) " tz noJo [n "'j') o /B(R) (2.8)

nt, j I



6 Thus the rates in Eq. (2.3) become

T(t) AJ(n,J;n',J';t)

(n, Jexp ngi C (rnI,j 1 nn (2.9

E. nit, #Il

All of the time dependence in the rate matrix A is now seen to be contained

in the multiplicative factor 1/T(t) so that the solution of Eq.(2.2) is the

exponential of a time independent matrix multiplied by a function of time.

These simple models have the disadvantage that the classical trajectory,

A(t), is not coupled to the internal degrees of freedom. Since this will not

conserve the total energy, the results can be unsatisfactory when the energy

transfer in the collision is an appreciable fraction of the translational

energy. One way of remedying this problem is to force conservation of energy
3

by defining the instantaneous radial velocity as

dR _+ E - 1/2

Practical application of this approach will, of course, require that R(t)

be computed numerically from Eq. (2.10) while the internal modes are propagated

dRby Eq.(2.2). The sign of T is not determined by Eq. (2.10) so that it may

be advantageous to integrate the momentum conjugate to R as well (see

Section IV). Expectation values of Ho and V are conveniently given by
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(HO)- nj P(nJ,t) (2.lla)
nj

(v) F , 17 -P>Fl:j't (nJIv(R)In',j'> (2.1lb)
n,J n',J'

although other choices are possible. The orbital angular momentum A may be

2treated as a constant within an effer.tive Hamiltonian formulation, or (L2

can be expressed in a proper coupled angular momentum representation.

B. The FPE for an Atom-Vibrotor System

For this special case the FPE is obtained by a Taylor expansion of

P'(n',j',t) in Eq.(2.2). However, this expansion could either be in terms

of the quantum numbers n,j or the corresponding energy states , P t
nja

can be shown that these two approaches are equivalent in that their finite

difference approximations both match the ME through second order (see

Section IV). However, it will be shown below that if the expansion is

performed in terms of the energy levels, the FPE coefficients are expressible

as matrix elements of simple functions of the interaction potential. This is

in contrast to the development in 1, which utilized expansions in the quantum

numbers. The two methods are identical whenever the energy levels are evenly

spaced as for a harmonic oscillator.
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The FPE in energy variables is now

-Lpj( ,c 1 ,tP P1  4 + B2 t

n n

+ c, Lp + C2  a 2 ,1.,J) + D 2 P ( neist) (2.12)
j j n j

where the coefficients are given by

Bk - (6. Zn k A-T(n,iJ; n 1,i't) (2.13a)Bk "k!

if,j , 9-
Ck j ~)k Aj(n,i;nh,i';t) (2. 13b)

D - I (nh-n) (.6 -9) A(n,;n',';t) (2.13.)

ns,Ji

The sums in Eqs.(2.13a,b,c) can be performed analytically. First define m

to be the reduced mass of the diatom and u w(r- re) to be the vibrational

displacement. The internal Hamiltonian Ho can be decomposed as

Ho  I H + Hr

where

H2 p, " u/2m + Vo(u) (2.14a)

H j2/2mr2  (2.14b)
r
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and

H In,j) - In,j) (2.15a)

HjIn,j) V cIn,j) (2.15b)

These last two equations assume that rotation and vibration are separfble,

but this approximation can be easily removed. The variots 4's in Eqs.(2.13a,bc)

can now be rep'laced by Iv and Hr. Inserting Eq. (2.3) into the expression

for B1 , Eq.(2.13a), yields

rB1 =  (n, J Iemp(iVT/h)I A', J'(n', j' (v -e) exp(-iv,r/?)jn,j) (2.16)

Noting that in',J')(n',j' i is just the unit operator leads to the result

TBI - (n,jexp(iVT/h)(Hv -C) ePV(-iVT! !n,J) (2.17)

It is convenient to define new states K .a k'.) by

I~v = exp(iV T/h)(Hv - n) exp( -ivt/h)n,J) (2.16,)

k'r - exp(iVr /h)(Hr-,c) exp(- iVT/h)n, j) (2.18b)



This allows Eqs.(2.13a,b,c) to be compactly written as

-rB, (n'Jibv> (2.19a)

2TB2 0 <(2.19b)

TCj - (nJl*r> (2.19c)

2TC 2 U ('rI)r >  (2L9d)

T D - rl~v (2.19e)

Furthermore Eq. (2.18a) can be rewritten as

-* exp(iVT/h) [(Hv- en) , exp(-iV'r/h)] I n, J>

where [.,.] is the commutator bracket. Therefore, it is easy to see that

2TQV -u nj 22a
, {V ( 2a a auV

and in a similar fashion

" v 2  + i 12{Tif2 (1~x .2 + .J{ . 2) ~L1  ij
-r rT iax BV G

X)TT p JPZ + Vlx\~ + lx) c2 5n,j) (2.20b)
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where x = cos e and the operator G is defined by5

cJj) -J(J+i1) r Ij~ ) .j

f2 I2j" 3

The three c dependent terms in Eq.(2.20b) can be removed by transforming

to the body-fixed (BF) reference frame6 or by using en effec,'Ive Hamiltonian

approximation.
2

The new states v I4r> have an interesting physical interpretation.

From the Heisenberg, equations of motion

dH -_X = 1 UV 5V)Ufi " dt "2 m au+ %

11i" -2 -p)(2.21a)

and

Ir i- (I -X2)a- + 2-hLG + (-" a " a- jz 2.21b)

The, states j4t>, v can, therefore, be expressed in the form

- + IL ( )2] In,j (.v V 2m a

2mr2ir - 1+ + 2 (1x 2 )()Vx) In,) (2.21

A which are of the form of T times a rate of energy transfer plus T2  times

a dispersive term.
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III. APPROXIMATION METHODS AND THE STOCHASTIC THEORY

Various standard approximation schemes for inelastic scattering can be

incorporated in the stochastic theory. In this regard it has been shown above

that the FPE coefficients can be obtained directly from the potential. The

properties of these coeffi~cenl:s, without further computation, may then be

used as a simple guide to the behavior of the collision system or may provide

physical insight into the approximation methods. For example, in this section

we shall consider the combination of breathing sphere and effective Hamiltonian

methods with the stochastic theory.

Effective Hamiltonian methods reduce the dimensionality of a close

coupled calculation by preaveraging or eliminating angular momentum projections

before doing the collision dynamics.2 The centrifugal decoupling (CD) approxi-

matLon7 is easily incorporated into a formulation of the ME or FPE. Use of

an effective potential8 with the FPE is inconvenient unless a Veff operator

can be defined, thus permitting the use of Eqs.(2.20a,b). However, it has

recently been shown that modified effactive potential operators can be defined

which retain the same dimensionality reduction as the or!.ginal formulation.
9

, In the BF reference frame the potential has no dependence on azimuthal

angles. Eq.(2.20b) therbfore simplifies to

2mrI) 1T(l x)( + irTh[-(6 x)~ + 21iTO VG} In,j) (3.1)

where x is now the cosine of the angle between and Ir. The quantum

number w (Lhe projection of the rotational -Angular momentum on the BF z

axis) should also be included in the ME, Eq.(2.2), in this case. Then (12



" C-16-

ir. Eq.(2.10) is given by

(A2) j 2 + (j2) - 2 ( 2  (3.2)

if the CD approximation is used. In an effective potential formulation, on

the other hand, A2 is treated as a constant throughout the collision.

The breathing sphere approximation assumes that there is no strong

vibration-rotation coupling. Defining P (.a t) as

it is easily seen that P , (nt) will satisfy a breathing sphere FPE if the

vibrational and rotational parts of Eq.(2.12) are separable. This will be

true, for instance, iV D-O and if B1 ,B2 have no rotational dependence.

Since the coefficients can be obtained relatively easily, it should be

possible to determine if a breathing sphere FPE is a good approximation to

Eq.(2.12).

J2
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IV. NUIeRICAL METHODS FOR SOLVING THE STOCHASTIC EQUATIONS

There will obviously be only a small class of scattering problems for

which the E and FPE are analytically solvable. Numerical methods for solving

the equations wLth appropriate boundary conditions are, therefore, considered

in this section. Consistent with the goal of describing the scattering process

by a simple equation, we shall assum.- that an effective potential will be

used.8'9 The translational degree of freedom will also be described by an

energy-conserving classical path as outlined in Section II.A.

A. Numerical Methods for the ME

Within the classical path approximation, the system is started in an

initi4l state n0jo  at a value of R outside the range of the potential.

For each value of the orbital angular momentum A, the equations for the

internal modes and R(t) are integrated until the particles are separating

and R is again outside the range of the potential. Each such "trajectory"

will yield the complete vector of transition probabilities into all the

possible final states nlj,

P n (E)

n0j0- 1j 1

Total cross sections for translational energy E t are then computed by

UnJonj(E) 2Eh(2Jo+1) 4 (E) (4 1)n 0 j0 -4 1112 jiE 1 2 J0+ 1)no J *nl j
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Internal state probabilities are propagated from time t to t+ T by

:1 the finite difference form of the HE

P (n,jt+,') I I(n'j expt-iV(R) /f] in',j' P (n',jl,t) (4.2)

where 'T is given by Eq.(2.5). The translational degree of freedom is

handled by numerically integrating the equationa

R sign(p R) Xj {2[E h2 t 2 (I +1) /2i.R (11) - (V 2 (4.3)

PR= h2A(A+ 1)/R 3 
- (V) (4.4)

with stqp size T. Since pR is only needed to determine the sign of R,

it does not matter that Eq.(4.4) will not conserve energy. At the end of

each time step pR can be set equal to p times R computed from Eq.(4.3).

An application of these ideas to a collinear vibrator is presented in the

Appendix.

When the dimensionality n of the problem is reasonably large, the

major computational expense of this procedure is the evaluation of the

microscopic transition rates on the R.H.S. of Eq.(4.2). This would normally

involve the numerical exponentiation of a matrix whose elements are

- iT (n,jlV(R)In,,j,)/h

When the potential has the form of Eq.(2.7), the time-consuming matrix

diagonalization needs to be performed only once. For a more general potential

Eq.(4.2) will require matrix manipulations whose difficulty varies like n3 .

Computational expense can therefore be a serious problem for large n, but

the PP dots not quffer from this ditficulty.
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B. Numerical Methods for the FPE

Solution of the FPE with a classical path assumption should be very

similar to the procedure outlined above for the NE. Internal state

probabilities are propagated, however, by a finite difference form of the FPE

rather than by Eq.(4.2). The FPE may be viewed as an approximation to the ME

in the limit that the discrete quantum states are closely spaced enough to

resemble a continuum. The possibly oscillatory transition rate matrix A is

also approximated by a smooth, continuous distribution, which is determined

by the first and second moments of A about the diagonal. Consequently, a

numerical solution of the FPE does not require the consideration of every

state, and the computational difficulty depends more on the number of degrees

of freedom than the number of states. This can be a great advantage for

complex collision systems where the number of open channels is very large.

The FPE is to be solved on a region with a stepped boundary since

conservation of the total energy links the maximum allowed vibrational and

rotational levels. This area must then be filled with a mesh or grid of

discrete points at which the partial derivatives of the FPE ere replaced by

finite differences. It is also desirable to express the boundary conditions

in a nuterical fashion that is independent of the particula: functional form

of the coefficients. Since the FPE is derived from the ME, formulation u.f

appropriate difference expressions and boundary conditions may be guided by a

comparison with the ME. It is, therefore, suggestive that the mesh be no

more closely spaced than the discrete quantum states. A typical (but

simplified) situation is shown in Figure 1 where each grid point is assumed

to lie on one of the quantum states. This figure is analyzed below.
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Define x and y to be the continuous variables corresponding to the t
vibrational energy and rotational energy, respectively. Now consider the

stace 11 of Figure 1 and the eigat states surrounding it to be typical of a

point away from the boundaries. Since the FPE was obtained by an expansion

through second order of the ME, it s natural that the continuous function

P(x,y) be obtained by quadr&tic interpolation. The expressions for the

partial derivatives are therefore, obtained from the biquadratic Lagrange

interpolating polynomial 
10

(Xy XI )(X-x 2) P0 0 (Y-yd)(y-Y2 1 P0 1(YYo)(Y 'Y2) + P0 2 (y-Yo ) (y-y)

x10X20  YIoY 20  YIoY 2 1  Y20YII

(X -x0)(x'x) [- ' 2y1 )(y 'y ) P11(y-Yo)(Y-y 2) P12(yYo)(Y-y 1)

x -X 21 0y21  + Y20y21

+ -x 20X 2 1  yIOY2 0  yIOY2 1  Y20Y2 1  (.
(x-x°)(x'x 1 ) [P 2 o(Y'Y 1 )(Y-Y )y -z . L ....P YY)YY)Lo + P22 (Y'Y°)(Y-Y1 )]Y 2 (4.5

where PiJ . P(xiyj) and xij xi xj•

The following expressions are thus obtained by differentiating Eq.(4.5):

_ I _ 2 2-
xo1 0xo20x bx x=x1  x1oP21  " x21 POI x20 (x1O-X 1) P1 (4.6a)I

* x ~10 20 21  - ~x 21 01~o - 20P11  10P 21] 4.b

*Y y
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B2P 2 2 2 2 22 2 2 2
10 ~ 1 0 1 21Y10Y2 0Y2 1  BXBY X x-X 1O;1l 22 21zY2lxo 0- A2 L 1 0 02 - x1 Y21 20

+ x 1Y20(y10 -Y2 1 )PO1 + Y221X20 (XI- -X 21 )P1 0

-xOY20 (y10  y2 1 )P 2 1 - Y20X2 0(Xl0 - X2 1 )P 1 2

+ x 20Y20 (x 10 -x2 1)(Y10 -y 2 1 )P 1 1  (4.7)

bp 62pApproximations for and =~ are obtained by switching x and y in

Eqs.(4.6a,b). If it is assumed that the microscopic traunsition rates

A(n,j;n',j';t) are zero for more than one step off the diagonal, it can b~t

shown that the finite difference form of the FPE is then identical to the

appropriate ME in Eq.(4.8)

~P(n,J, t) - A(n,j;n+ l,J,t) [P(n+ I,j,t) -P(n~i~t)]

+ A (n, J; n- 1, J,t) [P (n- 1, j,t) P (n. Jt)j

+ An~jn~j 1;) L~n~+ lt)P(nti~tj

+ A(n,j;n,j - l;t) LP(n,i - 1,t) -P(n,j~t)] (4.8)
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In this connection note that the D coefficient involves microscopic transi-

tion rates that are at least two steps off the diagonal (one in n and one in j).

The finite difference form of the FPE presented here therefore matches

the ME at n-1, n, and n+ I (and similarly for J). When n is equal to

zero, modified approximations to the partial derivatives which match the ME at

n, n+ i, and n+ 2 should be used. Appropriate revised expressions for

B a -nd - are obtained by evaluating the derivatives of Eq.(4.5) along

the left edge

I2
2

+x2 P(x-x y) (4.9a)

0x2 0x2 1y1 0' 0y2 1Y x 0 [YoP 2 " - y0 12 1 Y212Y1o 221 ill

Y- Y,

2 p 2 y o(y
10 10 22 21 20 '20Y' 10 21 '21 

x21 (x 1 0 +xo) 20 1o0 2  21P 00 - 20(y10  Y )P1  Oil

e case j -0 is treated by analog, --d at the corner point 0 0

0x20X21Y10Y20Y21  XByx 0  Y -o 10 12 10 20 10

Y=Yo~x~y x0x (y +

" x10 [Y2 0P21 - Yo 22  Y21 Y10 20 P20]

X (x 0X + x 0 ) 2 P 2  Y +y )Pooj (4.10)2110 2 V 01 " Y10P02 Y21yl 20 0O
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Suitable boundary conditions also need to be formulated for the upper

(stepped) edge. These must satisfy the requirements that all the probabilities

sum to unity while the flux ( X or 5y vanishes everywhere along the

,-pper border. This last condition can be fulfilled by assigning fictitious

probabilities to the layer of states imediately outside the region of

interest. It should be pointed out, however, that these non-zero closed

channel probabilities are only a mathematical construct with no physical

meaning. Referring to Figure 1, we thus set Po9Pos, P19=Ps18, P29 P18,

P2 8 = P1 8, etc. The above boundary conditions will still not insure conserva-

tion of probability; this can be accomplished by renormalizing the individual

probabilities at each step in time. It is easy to see that the procedure

outlinre.d here is consistent with a statistical solution, i.e4 ,

P(n,j,t) = l/(number of open states)

Leakage (dissociation) can also be allowed if the fluxes through part of the

upper boundary are different from zero (see paper I).

Reference to Figure 1 also reveals that the zero flux condition requires

P,2=P81  and P35 P4 =P 3 =P62. It should be recalled that only open states

are included in these calculations, and probabilities along the upper boundary

may, therefore, be unreliable. This is a common situation with any finite

basis set calculation. In Lhe present case no difficulty should be

encountered since the stochastic theory is developed for large systems where

the upper border is likely to be far from the region of interest. In other words,

most problems will be concerned with behavior in the lower left side of

Figure I and the presence of the upper boundary will frequently not be sensed.
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In view of the above, it is easily seen that propagating in time the

probability of being in any specific quantum state by means of the FPE requires

only the surrounding block of nine states. Thus the numerical effort of

computing each "trajectory" for this two-dimensional problem goes like 9n.

More generally the dependence would be n X 3 (n is the number of states

and N is the number of degrees of freedom). Numerical computation of the

FPE, like classical mechanical methods, depends more on the number of degrees

of freedom than the number of quantum states. This should be a tremendous

advantage when n is very large, as it is for many problems of interest. In

the limit of many states, the FPE may also be treated as an exact partial

differential equation rather than as a smoothed approximation to the ME. The

FPE can thus be solved with a coarser mesh, resulting in additional savings in

computational labor.

Considerations bearing on the choice of the time steps T were discussed

in Section II.A; for the FPE the numerical stability of the difference equations

should also be taken into account. We wish to apply the von Neumann stability

criterion to the FPE. Assume xn,Ym, t)  has the form

P (xn'v,'t) = exp(ine) exp(imp) exp(iXt)

where 0, q,, and X are some numbers. The difference equations are then

presumed stable if exp(iXt) is a decreasing exponential for all real 8

and cp. Applying this to the atom-vibrotor FPE yields the following

12
inequality:

x 1 +x y 1 y2 1  o , Lx2yoqX 2 xIO )0B1  - 2x-2 0 TB 2 jyIOy 2 1

+ I -(~2 y10) rC1 - 2 y2 Cj x 1 0 x + 2( 2 -x 0 ( 2 Y 0 TDt(1)
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where the indices 0, 1, 2 stand for n-1, n, n + 1, and similar indexing applies

to J. The maximum value of r allowed by Eq.(4.11) is thus a simple function

of the FPE coefficients.

If the interaction is weak, Eq.(4.11) can be readily compared with the

pcevious prescription. Expanding the exponential time propagator and assuming

a tridiagonal potential matrix gives

in-n'l < 1

2 2
TA(n,j;n',J';t) TIV nj£nij 2/h , 2  and Ii-i' 'IZ

0 otherwise

Inserting this into Eq. (4.11) yields

T* < h [ n ' + IVnj,n. j1 + IVnj,nj+l + IV njJl

which is similar to the physical criterion presented in Eq.(2.5).
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V. CONCLUSION

In this paper we have formulated additional practical procedures for

dealing with the stochastic equations presented in I. Molecular collisions

frequently involve relatively massive particles so that the translational

degree of freedom may be reasonably treated as following a classical trajectory.

We have presented a formalism in which the translational degree of freedom is

described by classical mechanics while the internal states are propagated by

a quantum stochastic equation of motion. Considering the simplicity of the

stochastic equations for the internal modes, this would seem to be an

attractive conceptual model for molecular collisions. Indeed, useful qualita-

tive information can be gaited from a knowledge of the FPE coefficients, even

without solving the equation, since these coefficients control the effective

cpllisional coupling.

There are numerous techniques for calcilating collisional information,

and each has its own realm of applicabtlity. Previous methcds have generally

proved inadequate for dealing with the scattering of relatively complex

particles. For many systems of interest, the number of open channels n is

too large for a fully quantal close coupling or effective Hamiltonian calcula-

tion to be practical. The expense of performing completely classical trajec-

tory studies depends more on the number of internal degrees of freedom N

than the number of states. They have the serious disadvantage, however, that

13
all quantum effects are lost. Classical S-matrix methods combin quant-un

interference effects with the ease of computing classical trajectories. Even

with the use of effective Hamiltonians,9 there may still be too many degrees

of freedom for a classical S-matrix calculation to be feasible for many

collision problems. It is hoped that the FPE, as formulated in this work,
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will permit reasonable and practical scattering calculations for very complex

collision systems.

Finally, the FPE is a type of partial differential equation which has

been extensively studied. It was shown in I how a knowledge of the FPE

coefficients and the associated boundary conditions could lead to reasonable

qualitative p:zdictions about the behavior of an inelastic collision. This

paper presents a practical oethod for proceeding directly from the interaction

potential tc the coefficients of the FPE. These could then be used for quali-

tative interpretation or as input into numerical calculations. It is therefore

hoped that a reasonably direct connection can be made between the Hamiltonian

of a system and the outcome of an inelastic collision.
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APPENDIX: CALCULATIONS FOR THE COLLINEAR VIBRATIONAL
EXCITATION OF A MODEL He-H2 SYSTEM

The collinear collision of an atom with a diatomic harmonic oscillator

has been used frequently as a test case for various approximate methods.

Calculations including certain simplifying assumptions were presented in I.

When these additional approximations are removed, the solutions of the ME can

14
be directly compared to "exact" quantum reslIts, and this is done below.

The collision system was described in I; as before the interaction

potential is taken to be an exponential repulsion between the atom and the

near end of the diatom. In the reduced units of Ref. 14a (except that the

unit of energy is hw not hw/2), the Hamiltonian is

RH/ = /2m + H0/hw+ V0 exp(-cYR) exp(cx) (Al)

where H0 is the vibrational energy of the oscillator, x is the reduced

displacemett of the oscillator from equilibrium, R is the reduced transla-

tional coordinate, and PR is its conjugate momentum. Since the Hamiltonian

is invariant to the transformationl
4b

R -0 R + 8

V0 may be arbitrarily set equal to E.

The finite difference form of the ME is

Pn(t+T) = A'(n,m,t) Pr(t) (A.2)

m
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where T is in units of w-1 and A'(n,m,t) : T A(n,m,t) + 8nm with

2
Axln,m,t) = I(ni exp[1iE exp(-aR) exp(ax)] Im) I (A.3)

The matrix elements of exp(cxx) are

(L. )112 -12mnm-n

(nlexp(cix)Im) = (n., (c2-/2)mn exp(a2/4) L n (-C2/2) (A.4)

for m > n (Lnm(x) is the associated Laguerre polynomial). Given values of£orGivn vlue n

T and F., the rates in Eq.(A.3) are then conveniently obtained by

numerically exponentiating the matrix whose n,m-th element is

i TE exp(- UR) (nI exp(cx) Im)

The ME was solved by the procedure outlined in Section IV.A. A fifth

order, variable step size Adams-Moulton predictor-corrector algorithm15 was

used to compute the classical trajectory for the R degree of freedom. At

each step energy was forced to be conserved by setting

ii(t) =sign (PR)X { 2[E - (110/ 7)W) - E ex -OR ep(e) m / (A.5)

while PR was predicted by integrating

R = + a Eexp(-Ce'R) (exp(cex)) (A.6)
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from t to t+T (cf. Eqs.(4.3),(4.4)). The expectation values in these

equations are given by

(H0/hw) = 7 (n+1/2) Pn(t)

n

(exp(c x)) = I (t) P(t)<nlexp(cex)Im)

n,m

Since PR is only needed for determining the sign of R, it does not natter

that repeated application of Eq.(A.6) will not conserve the total energy. At

the beginn-ing and end of each step, PR/m was set equal to R computed from

Eq.(A.5).

Each trajectory is started in sorce initial state n with R set equal

to some large value outside the range of the potential. The time steps T

should be given by (cf. Eq.(2.5))

T(t) = I Pn ( t ) IE exp L- R(t)][ I (n-m)2 (n exp(6, x) I m) a 121/2 >- (A.7)

n m

when in the strong interaction region. This equation is not applicable for

large R where the interaction is weak and it predicts steps much too large.

As a practical matter then the time step at the start of the trajectory was

given some value T' Just larger than the estimated minimum time from

Eq.(A.7). This was done to insu: that the strong interaction region was not

bypassed in the integration. When Eq.(A.7) predicted a smaller value than

T this smaller value was used,0'
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Calculations were performed16 for the parameter set m=2/3, ct =0.314

at E=8.0; and for m=2/3, a=O.30 at E=10.O. The two values of cy

were necessary because of differences ii the calculations of Refs. (14a) and

(14b). Results are plotted in Figures 2 and 3 along with the corresponding

quantum values. It may be seen that the stochastic curves seem to represent

the qu&atum mechanical transition probabilities with the oscillations averaged

out. This result is not surprising in view of the removal of phase interfer-

ences in the stochastic theory. It should also be pointed out that the col-

linear harmonic oscillator model apparently exhibits an anomalously large

amount of oscillation. Indeed quantum calculatio,' for a Morse oscillator

show much less of this kind of structure.14b

Calculations were also carried out at energies below E -8. However,

these results were in generally poor agreement with the quantum values for E

less than 6.0. This is not unexpected since the stochastic theory should be

best where there are a large number of strongly coupled states.

The procedure used here for conserving ener3y io longer guarantees th.

satisfaction of microscopic reversibility (i.e., P (E) = Pnf nj(E)).

However fz: classically allowed transitions, the probabilities for excitation

and deexcitation were still in reasonable agreement. In contrast, the

probability of deexcitation is much smaller (and more realistic than the

excitation probabilities) when the transitions were classically forbidden.

The origin of this phenomenon is unclear.
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Figure Captions

Figure 1.
A set of mesh points for the solution of an atom-vibrator FPE. The

equation is to be solved in the shaded region while the layer of closed

states outside of the upper edge is used to formulate the boundary condi-

tions. The number of states and their spacings are intended for illustra-

tive purposes only and should not be construed to represent any real system.

The continuous variables x and y correspond to the vibrational energy and

rotational energy, respectively.

Figure 2.
Plot of transiticn probabilities from initial states no as a function

of final state n (Pn ) for E = 8. These are for the cillinear oscillator

problem with a = O.,14 and m = 2/3. The solid lines connect the quantum

values of Clark and Dickinson 14 b while the open circles are the stochastic

results of this work.

Figure 3.
The same as Figure 2 for E = 10 except that a 0.30. Quantum results

I4a.are those of Secrest and Johnson
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